Back to Search Start Over

Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus).

Authors :
Dunning LT
Dennis AB
Sinclair BJ
Newcomb RD
Buckley TR
Source :
Molecular ecology [Mol Ecol] 2014 Jun; Vol. 23 (11), pp. 2712-26. Date of Electronic Publication: 2014 May 16.
Publication Year :
2014

Abstract

In widespread and genetically structured populations, temperature variation may lead to among-population differentiation of thermal biology. The New Zealand stick insect genus Micrarchus contains four species that inhabit different thermal environments, two of which are geographically widespread. RNA-Seq and quantitative PCR were used to investigate the transcriptional responses to cold shock among lowland and alpine species to identify cold-responsive transcripts that differ between the species and to determine whether there is intraspecific geographical variation in gene expression. We also used mitochondrial DNA, nuclear 28S ribosomal DNA and transcriptome-wide SNPs to determine phylogeographic structure and the potential for differences in genetic backgrounds to contribute to variation in gene expression. RNA-Seq identified 2160 unigenes that were differentially expressed as a result of low-temperature exposure across three populations from two species (M. hystriculeus and M. nov. sp. 2), with a majority (68% ± 20%) being population specific. This extensive geographical variation is consistent across years and is likely a result of background genetic differences among populations caused by genetic drift and possibly local adaptation. Responses to cold shock shared among alpine M. nov. sp. 2 populations included the enrichment of cuticular structure-associated transcripts, suggesting that cuticle modification may have accompanied colonization of low-temperature alpine environments and the development of a more cold-hardy phenotype.<br /> (© 2014 John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1365-294X
Volume :
23
Issue :
11
Database :
MEDLINE
Journal :
Molecular ecology
Publication Type :
Academic Journal
Accession number :
24762129
Full Text :
https://doi.org/10.1111/mec.12767