Back to Search
Start Over
In vivo assessment and dosimetry of 2 novel PDE10A PET radiotracers in humans: 18F-MNI-659 and 18F-MNI-654.
- Source :
-
Journal of nuclear medicine : official publication, Society of Nuclear Medicine [J Nucl Med] 2014 Aug; Vol. 55 (8), pp. 1297-304. Date of Electronic Publication: 2014 Jun 04. - Publication Year :
- 2014
-
Abstract
- Unlabelled: Phosphodiesterase (PDE) 10A is an enzyme involved in the regulation of cyclic adenosine monophosphate and cyclic guanosine monophosphate and is highly expressed in medium-sized spiny neurons of the striatum, making it an attractive target for novel therapies for a variety of neurologic and psychiatric disorders that involve striatal function. Potential ligands for PET imaging of PDE10A have been reported. Here, we report the first-in-human characterization of 2 new PDE10A radioligands, 2-(2-(3-(1-(2-fluoroethyl)-1H-indazol-6-yl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ((18)F-MNI-654) and 2-(2-(3-(4-(2-fluoroethoxy)phenyl)-7-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)ethyl)-4-isopropoxyisoindoline-1,3-dione ((18)F-MNI-659), with the goal of selecting the best one for use in future studies interrogating pathophysiologic changes in neuropsychiatric disorders and aiding pharmaceutical development targeting PDE10A.<br />Methods: Eleven healthy volunteers participated in this study ((18)F-MNI-654 test-retest, 2 men; (18)F-MNI-659 test-retest, 4 men and 1 woman; (18)F-MNI-659 dosimetry, 2 men and 2 women). Brain PET images were acquired over 5.5 h for (18)F-MNI-654 and over 3.5 h for (18)F-MNI-659, and pharmacokinetic modeling with plasma- and reference-region (cerebellar cortex)-based methods was performed. Whole-body PET images were acquired over 6 h for (18)F-MNI-659 and radiation dosimetry estimated with OLINDA.<br />Results: Both radiotracers were similarly metabolized, with about 20% of intact parent remaining at 120 min after injection. PET time-activity data demonstrated that (18)F-MNI-654 kinetics were much slower than (18)F-MNI-659 kinetics. For (18)F-MNI-659, there was good agreement between the Logan and simplified reference tissue models for nondisplaceable binding potential (BPND), supporting noninvasive quantification, with test-retest variability less than 10% and intraclass correlation greater than 0.9. The (18)F-MNI-659 effective dose was estimated at 0.024 mSv/MBq.<br />Conclusion: PET imaging in the human brain with 2 novel PDE10A (18)F tracers is being reported. Noninvasive quantification of (18)F-MNI-659 with the simplified reference tissue model using the cerebellum as a reference is possible. In addition, (18)F-MNI-659 kinetics are fast enough for a good estimate of BPND with 90 min of data, with values around 3.0 in the basal ganglia. Finally, (18)F-MNI-659 dosimetry is favorable and consistent with values reported for other PET radiotracers currently used in humans.<br /> (© 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.)
- Subjects :
- Adult
Animals
Brain diagnostic imaging
Brain metabolism
Female
Humans
Image Processing, Computer-Assisted
Kinetics
Male
Models, Biological
Radioactive Tracers
Radiometry
Rats
Whole Body Imaging
Indoles metabolism
Phosphoric Diester Hydrolases metabolism
Phthalimides metabolism
Positron-Emission Tomography methods
Quinazolinones metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1535-5667
- Volume :
- 55
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
- Publication Type :
- Academic Journal
- Accession number :
- 24898025
- Full Text :
- https://doi.org/10.2967/jnumed.113.122895