Back to Search
Start Over
tBRD-1 selectively controls gene activity in the Drosophila testis and interacts with two new members of the bromodomain and extra-terminal (BET) family.
- Source :
-
PloS one [PLoS One] 2014 Sep 24; Vol. 9 (9), pp. e108267. Date of Electronic Publication: 2014 Sep 24 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Multicellular organisms have evolved specialized mechanisms to control transcription in a spatial and temporal manner. Gene activation is tightly linked to histone acetylation on lysine residues that can be recognized by bromodomains. Previously, the testis-specifically expressed bromodomain protein tBRD-1 was identified in Drosophila. Expression of tBRD-1 is restricted to highly transcriptionally active primary spermatocytes. tBRD-1 is essential for male fertility and proposed to act as a co-factor of testis-specific TATA box binding protein-associated factors (tTAFs) for testis-specific transcription. Here, we performed microarray analyses to compare the transcriptomes of tbrd-1 mutant testes and wild-type testes. Our data confirmed that tBRD-1 controls gene activity in male germ cells. Additionally, comparing the transcriptomes of tbrd-1 and tTAF mutant testes revealed a subset of common target genes. We also characterized two new members of the bromodomain and extra-terminal (BET) family, tBRD-2 and tBRD-3. In contrast to other members of the BET family in animals, both possess only a single bromodomain, a characteristic feature of plant BET family members. Immunohistology techniques not only revealed that tBRD-2 and tBRD-3 partially co-localize with tBRD-1 and tTAFs in primary spermatocytes, but also that their proper subcellular distribution was impaired in tbrd-1 and tTAF mutant testes. Treating cultured male germ cells with inhibitors showed that localization of tBRD-2 and tBRD-3 depends on the acetylation status within primary spermatocytes. Yeast two-hybrid assays and co-immunoprecipitations using fly testes protein extracts demonstrated that tBRD-1 is able to form homodimers as well as heterodimers with tBRD-2, tBRD-3, and tTAFs. These data reveal for the first time the existence of single bromodomain BET proteins in animals, as well as evidence for a complex containing tBRDs and tTAFs that regulates transcription of a subset of genes with relevance for spermiogenesis.
- Subjects :
- Animals
Cells, Cultured
Drosophila Proteins analysis
Drosophila melanogaster physiology
Gene Expression Regulation
Male
Nuclear Proteins analysis
Nuclear Proteins metabolism
Spermatocytes cytology
Spermatocytes metabolism
Spermatogenesis
TATA-Binding Protein Associated Factors
Testis cytology
Drosophila Proteins genetics
Drosophila Proteins metabolism
Drosophila melanogaster genetics
Nuclear Proteins genetics
Protein Interaction Maps
Testis metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 9
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 25251222
- Full Text :
- https://doi.org/10.1371/journal.pone.0108267