Back to Search Start Over

Solving the supply of resveratrol tetramers from Papua New Guinean rainforest anisoptera species that inhibit bacterial type III secretion systems.

Authors :
Davis RA
Beattie KD
Xu M
Yang X
Yin S
Holla H
Healy PC
Sykes M
Shelper T
Avery VM
Elofsson M
Sundin C
Quinn RJ
Source :
Journal of natural products [J Nat Prod] 2014 Dec 26; Vol. 77 (12), pp. 2633-40. Date of Electronic Publication: 2014 Nov 18.
Publication Year :
2014

Abstract

The supply of (-)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to provide material for preclinical investigation. High-throughput screening of a prefractionated natural product library aimed to identify compounds that inhibit the bacterial virulence type III secretion system (T3SS) identified several fractions derived from two Papua New Guinean Anisoptera species, showing activity against Yersinia pseudotuberculosis outer proteins E and H (YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. polyandra, resulted in three known resveratrol tetramers, (-)-hopeaphenol (1), vatalbinoside A (2), and vaticanol B (3). Compounds 1-3 displayed IC50 values of 8.8, 12.5, and 9.9 μM in a luminescent reporter-gene assay (YopE) and IC50 values of 2.9, 4.5, and 3.3 μM in an enzyme-based YopH assay, respectively, which suggested that they could potentially act against the T3SS in Yersinia. The structures of 1-3 were confirmed through a combination of spectrometric, chemical methods, and single-crystal X-ray structure determinations of the natural product 1 and the permethyl ether analogue of 3. The enzymatic hydrolysis of the β-glycoside 2 to the aglycone 1 was achieved through biotransformation using the endogenous leaf enzymes. This significantly enhanced the yield of the target bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (-)-hopeaphenol (1).

Details

Language :
English
ISSN :
1520-6025
Volume :
77
Issue :
12
Database :
MEDLINE
Journal :
Journal of natural products
Publication Type :
Academic Journal
Accession number :
25405587
Full Text :
https://doi.org/10.1021/np500433z