Back to Search
Start Over
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.
- Source :
-
PLoS genetics [PLoS Genet] 2014 Nov 20; Vol. 10 (11), pp. e1004783. Date of Electronic Publication: 2014 Nov 20 (Print Publication: 2014). - Publication Year :
- 2014
-
Abstract
- Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication.
- Subjects :
- Cell Fusion
Fungal Proteins metabolism
Histidine Kinase
Hyphae genetics
Hyphae growth & development
MAP Kinase Kinase 2 metabolism
MAP Kinase Signaling System genetics
Neurospora crassa genetics
Neurospora crassa metabolism
Protein Kinases metabolism
Protein Serine-Threonine Kinases metabolism
Spores, Fungal genetics
Spores, Fungal growth & development
Fungal Proteins genetics
MAP Kinase Kinase 2 genetics
Membrane Proteins genetics
Mitogen-Activated Protein Kinases genetics
Protein Kinases genetics
Protein Serine-Threonine Kinases genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1553-7404
- Volume :
- 10
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- PLoS genetics
- Publication Type :
- Academic Journal
- Accession number :
- 25412208
- Full Text :
- https://doi.org/10.1371/journal.pgen.1004783