Back to Search Start Over

Higher landing accuracy in expert pilots is associated with lower activity in the caudate nucleus.

Authors :
Adamson MM
Taylor JL
Heraldez D
Khorasani A
Noda A
Hernandez B
Yesavage JA
Source :
PloS one [PLoS One] 2014 Nov 26; Vol. 9 (11), pp. e112607. Date of Electronic Publication: 2014 Nov 26 (Print Publication: 2014).
Publication Year :
2014

Abstract

The most common lethal accidents in General Aviation are caused by improperly executed landing approaches in which a pilot descends below the minimum safe altitude without proper visual references. To understand how expertise might reduce such erroneous decision-making, we examined relevant neural processes in pilots performing a simulated landing approach inside a functional MRI scanner. Pilots (aged 20-66) were asked to "fly" a series of simulated "cockpit view" instrument landing scenarios in an MRI scanner. The scenarios were either high risk (heavy fog-legally unsafe to land) or low risk (medium fog-legally safe to land). Pilots with one of two levels of expertise participated: Moderate Expertise (Instrument Flight Rules pilots, n = 8) or High Expertise (Certified Instrument Flight Instructors or Air-Transport Pilots, n = 12). High Expertise pilots were more accurate than Moderate Expertise pilots in making a "land" versus "do not land" decision (CFII: d' = 3.62 ± 2.52; IFR: d' = 0.98 ± 1.04; p<.01). Brain activity in bilateral caudate nucleus was examined for main effects of expertise during a "land" versus "do not land" decision with the no-decision control condition modeled as baseline. In making landing decisions, High Expertise pilots showed lower activation in the bilateral caudate nucleus (0.97 ± 0.80) compared to Moderate Expertise pilots (1.91 ± 1.16) (p<.05). These findings provide evidence for increased "neural efficiency" in High Expertise pilots relative to Moderate Expertise pilots. During an instrument approach the pilot is engaged in detailed examination of flight instruments while monitoring certain visual references for making landing decisions. The caudate nucleus regulates saccade eye control of gaze, the brain area where the "expertise" effect was observed. These data provide evidence that performing "real world" aviation tasks in an fMRI provide objective data regarding the relative expertise of pilots and brain regions involved in it.

Details

Language :
English
ISSN :
1932-6203
Volume :
9
Issue :
11
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
25426935
Full Text :
https://doi.org/10.1371/journal.pone.0112607