Back to Search
Start Over
Neuroprotection by Kukoamine A against oxidative stress may involve N-methyl-D-aspartate receptors.
- Source :
-
Biochimica et biophysica acta [Biochim Biophys Acta] 2015 Feb; Vol. 1850 (2), pp. 287-98. Date of Electronic Publication: 2014 Nov 08. - Publication Year :
- 2015
-
Abstract
- Background: Accumulative evidences have indicated that oxidative-stress and over-activation of N-methyl-d-aspartate receptors (NMDARs) are important mechanisms of brain injury. This study investigated the neuroprotection of Kukoamine A (KuA) and its potential mechanisms.<br />Methods: Molecular docking was used to discover KuA that might have the ability of blocking NMDARs. Furthermore, the MTT assay, the measurement of LDH, SOD and MDA, the flow cytometry for ROS, MMP and Annexin V-PI double staining, the laser confocal microscopy for intracellular Ca2+ and western-blot analysis were employed to evaluate the neuroprotection of KuA.<br />Results: KuA attenuated H2O2-induced cell apoptosis, LDH release, ROS production, MDA level, MMP loss, and intracellular Ca2+ overload (both induced by H2O2 and NMDA), as well as increased the SOD activity. In addition, it could modulate the apoptosis-related proteins (Bax, Bcl-2, p53, procaspase-3 and procaspase-9), the SAPKs (ERK, p38), AKT, CREB, NR2A and NR2B expression.<br />Conclusions: All the results indicated that KuA has the ability of anti-oxidative stress and this effect may partly via blocking NMDARs in SH-SY5Y cells.<br />General Significance: KuA might have the potential therapeutic interventions for brain injury.<br /> (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Subjects :
- Apoptosis Regulatory Proteins metabolism
Brain Injuries drug therapy
Brain Injuries metabolism
Brain Injuries pathology
Calcium metabolism
Cell Line, Tumor
Humans
Hydrogen Peroxide pharmacology
L-Lactate Dehydrogenase metabolism
Malondialdehyde metabolism
Oxidants pharmacology
Receptors, N-Methyl-D-Aspartate metabolism
Spermine pharmacology
Superoxide Dismutase metabolism
Apoptosis drug effects
Neuroprotective Agents pharmacology
Oxidative Stress drug effects
Receptors, N-Methyl-D-Aspartate antagonists & inhibitors
Spermine analogs & derivatives
Subjects
Details
- Language :
- English
- ISSN :
- 0006-3002
- Volume :
- 1850
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta
- Publication Type :
- Academic Journal
- Accession number :
- 25445711
- Full Text :
- https://doi.org/10.1016/j.bbagen.2014.11.006