Back to Search
Start Over
Antihyperglycemic mechanism of metformin occurs via the AMPK/LXRα/POMC pathway.
- Source :
-
Scientific reports [Sci Rep] 2015 Jan 30; Vol. 5, pp. 8145. Date of Electronic Publication: 2015 Jan 30. - Publication Year :
- 2015
-
Abstract
- Metformin is a first-line drug for treating type 2 diabetes. Although metformin is known to phosphorylate AMP-activated protein kinase (AMPK), it is unclear how the glucose-lowering effect of metformin is related to AMPK activation. The aim of this study was to identify the urinary endogenous metabolites affected by metformin and to identify the novel underlying molecular mechanisms related to its anti-diabetic effect. Fourteen healthy male subjects were orally administered metformin (1000 mg) once. First morning urine samples were taken before and after administration to obtain metabolomic data. We then further investigated the anti-diabetic mechanism of metformin in vitro and in vivo. The fluctuation of the metabolite cortisol indicated that the neuroendocrine system was involved in the anti-diabetic effect of metformin. Actually we found that metformin induced AMPK/liver X receptor α (LXRα) phosphorylation, followed by pro-opiomelanocortin (POMC) suppression in rat pituitary cells. We confirmed this result by administering metformin in an animal study. Given that cortisol stimulates gluconeogenesis, we propose the anti-hyperglycemic effect of metformin is attributed to reduced POMC/adrenocorticotropic hormone (ACTH)/cortisol levels following AMPK/LXRα phosphorylation in the pituitaries.
- Subjects :
- Adrenocorticotropic Hormone
Adult
Animals
Blood Glucose metabolism
Cell Line, Tumor
Chromatography, High Pressure Liquid
Humans
Hydrocortisone urine
Hypoglycemic Agents administration & dosage
Immunohistochemistry
Liver X Receptors
Male
Mass Spectrometry
Metabolomics
Metformin administration & dosage
Models, Biological
Phosphorylation drug effects
Principal Component Analysis
Rats
Young Adult
AMP-Activated Protein Kinases metabolism
Hypoglycemic Agents pharmacology
Metformin pharmacology
Orphan Nuclear Receptors metabolism
Pro-Opiomelanocortin metabolism
Signal Transduction drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 5
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 25634597
- Full Text :
- https://doi.org/10.1038/srep08145