Back to Search Start Over

Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks.

Authors :
An B
Tang-Schomer M
Huang W
He J
Jones J
Lewis RV
Kaplan DL
Source :
Biomaterials [Biomaterials] 2015 Apr; Vol. 48, pp. 137-146. Date of Electronic Publication: 2015 Feb 11.
Publication Year :
2015

Abstract

Recombinant spider silks produced in transgenic goat milk were studied as cell culture matrices for neuronal growth. Major ampullate spidroin 1 (MaSp1) supported neuronal growth, axon extension and network connectivity, with cell morphology comparable to the gold standard poly-lysine. In addition, neurons growing on MaSp1 films had increased neural cell adhesion molecule (NCAM) expression at both mRNA and protein levels. The results indicate that MaSp1 films present useful surface charge and substrate stiffness to support the growth of primary rat cortical neurons. Moreover, a putative neuron-specific surface binding sequence GRGGL within MaSp1 may contribute to the biological regulation of neuron growth. These findings indicate that MaSp1 could regulate neuron growth through its physical and biological features. This dual regulation mode of MaSp1 could provide an alternative strategy for generating functional silk materials for neural tissue engineering.<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-5905
Volume :
48
Database :
MEDLINE
Journal :
Biomaterials
Publication Type :
Academic Journal
Accession number :
25701039
Full Text :
https://doi.org/10.1016/j.biomaterials.2015.01.044