Back to Search
Start Over
Ocular dominance plasticity disrupts binocular inhibition-excitation matching in visual cortex.
- Source :
-
Current biology : CB [Curr Biol] 2015 Mar 16; Vol. 25 (6), pp. 713-721. Date of Electronic Publication: 2015 Mar 05. - Publication Year :
- 2015
-
Abstract
- Background: To ensure that neuronal networks function in a stable fashion, neurons receive balanced inhibitory and excitatory inputs. In various brain regions, this balance has been found to change temporarily during plasticity. Whether changes in inhibition have an instructive or permissive role in plasticity remains unclear. Several studies have addressed this question using ocular dominance plasticity in the visual cortex as a model, but so far, it remains controversial whether changes in inhibition drive this form of plasticity by directly affecting eye-specific responses or through increasing the plasticity potential of excitatory connections.<br />Results: We tested how three major classes of interneurons affect eye-specific responses in normally reared or monocularly deprived mice by optogenetically suppressing their activity. We find that in contrast to somatostatin-expressing or vasoactive intestinal polypeptide-expressing interneurons, parvalbumin (PV)-expressing interneurons strongly inhibit visual responses. In individual neurons of normal mice, inhibition and excitation driven by either eye are balanced, and suppressing PV interneurons does not alter ocular preference. Monocular deprivation disrupts the binocular balance of inhibition and excitation in individual neurons, causing suppression of PV interneurons to change their ocular preference. Importantly, however, these changes do not consistently favor responses to one of the eyes at the population level.<br />Conclusions: Monocular deprivation disrupts the binocular balance of inhibition and excitation of individual cells. This disbalance does not affect the overall expression of ocular dominance. Our data therefore support a permissive rather than an instructive role of inhibition in ocular dominance plasticity.<br /> (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Subjects :
- Animals
Archaeal Proteins genetics
Archaeal Proteins metabolism
Electrophysiological Phenomena
Interneurons classification
Interneurons physiology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Models, Neurological
Nerve Net physiology
Neuronal Plasticity physiology
Parvalbumins genetics
Parvalbumins metabolism
Recombinant Proteins genetics
Recombinant Proteins metabolism
Vision, Binocular physiology
Dominance, Ocular physiology
Visual Cortex physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1879-0445
- Volume :
- 25
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Current biology : CB
- Publication Type :
- Academic Journal
- Accession number :
- 25754642
- Full Text :
- https://doi.org/10.1016/j.cub.2015.01.024