Back to Search
Start Over
DNA-Encoded Chromatin Structural Intron Boundary Signals Identify Conserved Genes with Common Function.
- Source :
-
International journal of genomics [Int J Genomics] 2015; Vol. 2015, pp. 167578. Date of Electronic Publication: 2015 Mar 11. - Publication Year :
- 2015
-
Abstract
- The regulation of metazoan gene expression occurs in part by pre-mRNA splicing into mature RNAs. Signals affecting the efficiency and specificity with which introns are removed have not been completely elucidated. Splicing likely occurs cotranscriptionally, with chromatin structure playing a key regulatory role. We calculated DNA encoded nucleosome occupancy likelihood (NOL) scores at the boundaries between introns and exons across five metazoan species. We found that (i) NOL scores reveal a sequence-based feature at the introns on both sides of the intron-exon boundary; (ii) this feature is not part of any recognizable consensus sequence; (iii) this feature is conserved throughout metazoa; (iv) this feature is enriched in genes sharing similar functions: ATPase activity, ATP binding, helicase activity, and motor activity; (v) genes with these functions exhibit different genomic characteristics; (vi) in vivo nucleosome positioning data confirm ontological enrichment at this feature; and (vii) genes with this feature exhibit unique dinucleotide distributions at the intron-exon boundary. The NOL scores point toward a physical property of DNA that may play a role in the mechanism of pre-mRNA splicing. These results provide a foundation for identification of a new set of regulatory DNA elements involved in splicing regulation.
Details
- Language :
- English
- ISSN :
- 2314-436X
- Volume :
- 2015
- Database :
- MEDLINE
- Journal :
- International journal of genomics
- Publication Type :
- Academic Journal
- Accession number :
- 25861617
- Full Text :
- https://doi.org/10.1155/2015/167578