Back to Search
Start Over
Luteolin suppresses TCDD-induced wasting syndrome in a cultured adipocyte model.
- Source :
-
Pesticide biochemistry and physiology [Pestic Biochem Physiol] 2015 May; Vol. 120, pp. 14-20. Date of Electronic Publication: 2014 Nov 18. - Publication Year :
- 2015
-
Abstract
- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various toxic effects, including wasting syndrome, through activation of an aryl hydrocarbon receptor (AhR). Our previous report demonstrated that certain flavonoids inhibit the activation of AhR and suppress its DNA binding activity. In this study, we searched for an active compound among 13 flavonoids that suppressed TCDD-induced loss of lipid accumulation using 3T3-L1 adipocytes as a cell culture model for wasting syndrome. Two flavonoids, luteolin and epigallocatechin gallate, suppressed TCDD-induced loss of lipid accumulation in this model. We further investigated luteolin to clarify the underlying molecular mechanism and confirmed that luteolin inhibited nuclear translocation of AhR caused by TCDD. Luteolin also inhibited the TCDD-driven decrease in protein expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Although TCDD alone did not change protein expression of C/EBPβ and C/EBPδ, luteolin and TCDD up-regulated C/EBPδ expression in a dose-dependent manner. On the other hand, TCDD significantly decreased DNA binding of C/EBPβ and C/EBPδ, and luteolin completely canceled TCDD-decreased DNA binding of them. We conclude that luteolin suppresses the TCDD-induced loss of lipid accumulation in 3T3-L1 adipocytes by preventing a decrease in protein expression of PPARγ and C/EBPα, the master regulators of adipocyte differentiation and in DNA binding of C/EBPβ and C/EBPδ. Moreover, luteolin was rapidly incorporated and accumulated in 3T3-L1 adipocytes. Thus, luteolin is an attractive compound for the prevention of TCDD-induced wasting syndrome.<br /> (Copyright © 2014 Elsevier Inc. All rights reserved.)
- Subjects :
- 3T3-L1 Cells
Adipocytes metabolism
Animals
CCAAT-Enhancer-Binding Protein-beta metabolism
CCAAT-Enhancer-Binding Protein-delta metabolism
CCAAT-Enhancer-Binding Proteins metabolism
DNA metabolism
Lipid Metabolism
Mice
PPAR gamma metabolism
Receptors, Aryl Hydrocarbon metabolism
Wasting Syndrome
Adipocytes drug effects
Luteolin pharmacology
Polychlorinated Dibenzodioxins toxicity
Subjects
Details
- Language :
- English
- ISSN :
- 1095-9939
- Volume :
- 120
- Database :
- MEDLINE
- Journal :
- Pesticide biochemistry and physiology
- Publication Type :
- Academic Journal
- Accession number :
- 25987215
- Full Text :
- https://doi.org/10.1016/j.pestbp.2014.11.005