Back to Search
Start Over
Electron tomography based on highly limited data using a neural network reconstruction technique.
- Source :
-
Ultramicroscopy [Ultramicroscopy] 2015 Nov; Vol. 158, pp. 81-8. Date of Electronic Publication: 2015 Jul 10. - Publication Year :
- 2015
-
Abstract
- Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.<br /> (Copyright © 2015 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-2723
- Volume :
- 158
- Database :
- MEDLINE
- Journal :
- Ultramicroscopy
- Publication Type :
- Academic Journal
- Accession number :
- 26202896
- Full Text :
- https://doi.org/10.1016/j.ultramic.2015.07.001