Back to Search Start Over

A Ni(OH)2-modified Ti-doped α-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(OH)2 as a cocatalyst.

Authors :
Xu D
Fu Z
Wang D
Lin Y
Sun Y
Meng D
Feng Xie T
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2015 Oct 07; Vol. 17 (37), pp. 23924-30. Date of Electronic Publication: 2015 Aug 26.
Publication Year :
2015

Abstract

For semiconductor-based PEC systems, loading an appropriate cocatalyst on a semiconductor (such as a solar-active material) can significantly improve the PEC activity due to the suppression of photogenerated charge recombination. But there is little direct information about the role of a cocatalyst in the spatial separation of photogenerated charge carriers. In our work, a combination of surface photovoltage spectroscopy (SPS), transient photovoltage (TPV) technique, photoelectrochemical impedance spectroscopy (PEIS) and transient photocurrent measurements was used to study the real role of Ni(OH)2 as a cocatalyst for the enhanced PEC performance of Ni(OH)2-modified Ti-doped α-Fe2O3. It was found that Ni(OH)2 as a hole storage layer enhances the separation of photogenerated charge carriers and increases the lifetime of holes, which contributed to the enhanced photocurrent. In addition, Ni(OH)2 is a good cocatalyst for urea oxidation which suppresses the over-potential, resulting in a negative shift of the onset potential.

Details

Language :
English
ISSN :
1463-9084
Volume :
17
Issue :
37
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
26309038
Full Text :
https://doi.org/10.1039/c5cp03310a