Back to Search Start Over

Hepatocyte spheroid culture on fibrous scaffolds with grafted functional ligands as an in vitro model for predicting drug metabolism and hepatotoxicity.

Authors :
Yan S
Wei J
Liu Y
Zhang H
Chen J
Li X
Source :
Acta biomaterialia [Acta Biomater] 2015 Dec; Vol. 28, pp. 138-148. Date of Electronic Publication: 2015 Sep 26.
Publication Year :
2015

Abstract

The identification of a biologic substrate for maintaining hepatocyte functions is essential to provide reliable and predictable models for in vitro drug screening. In the current study, a three-dimensional culture of hepatocytes was established on highly porous fibrous scaffolds with grafted galactose and RGD to afford extensive cell-cell and cell-scaffold interactions spatially. The pore size and ligand densities indicated significant effects on the formation of hepatocyte spheroids in balancing the cell retention, adhesion, and migration on fibrous scaffolds. Fibrous scaffolds with an average pore size of 60 μm and surface grafting densities of galactose at 5.9 nmol/cm(2) and RGD at 6.9 pmol/cm(2) provided optimal microenvironments for hepatocyte infiltration and multicellular spheroid formation. Significant promotions were also demonstrated in the syntheses of albumin and urea and the activities of phase I (CYP 3A11 and CYP 2C9) and phase II enzymes. The in vitro metabolism tests on testosterone and acetaminophen by hepatocytes on the optimal scaffolds indicated the predicated clearance rates of 50.7 and 22.6 ml/min/kg, respectively, which were comparable to the in vivo values of rats. The in vitro hepatotoxicity tests on amiodarone hydrochloride and acetaminophen predicted the half maximal effective concentrations (EC50) to reflect the in vivo toxic plasma concentrations in human. In addition, the enzyme activities, predicted clearance rates and hepatotoxicity values of hepatocytes on the optimal scaffolds experienced sensitive responsiveness to specific inducers or inhibitors of CYP 3A11 and phase II enzymes, exhibiting in vivo-in vitro correlations to a certain extent. These results demonstrate the feasibility of hepatocyte spheroid culture on fibrous scaffolds as an potential in vitro testing model to predict the in vivo drug metabolism, hepatotoxicity, and drug-drug interactions.<br /> (Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-7568
Volume :
28
Database :
MEDLINE
Journal :
Acta biomaterialia
Publication Type :
Academic Journal
Accession number :
26409440
Full Text :
https://doi.org/10.1016/j.actbio.2015.09.027