Back to Search
Start Over
Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.
- Source :
-
PloS one [PLoS One] 2015 Oct 16; Vol. 10 (10), pp. e0140697. Date of Electronic Publication: 2015 Oct 16 (Print Publication: 2015). - Publication Year :
- 2015
-
Abstract
- Background: Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO) production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC) is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.<br />Methods and Results: We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS) reduction, inducible nitric oxide synthase (iNOS) and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF), placental growth factor (PlGF) and reduction of NADPH-oxidase 4 (Nox4) expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM) expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.<br />Conclusion: PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and pharmacological targeting of endothelial dysfunction may represent a promising tool for the treatment of delayed wound healing or chronic ulcers.
- Subjects :
- Animals
Blood Flow Velocity drug effects
Carnitine pharmacology
Dermis injuries
Dermis pathology
Endothelial Cells pathology
Humans
Male
NADPH Oxidase 4
NADPH Oxidases metabolism
Nitric Oxide metabolism
Nitric Oxide Synthase Type II biosynthesis
Placenta Growth Factor
Pregnancy Proteins biosynthesis
Rats
Rats, Wistar
Reactive Oxygen Species metabolism
Up-Regulation drug effects
Vascular Endothelial Growth Factor A biosynthesis
Vascular Endothelial Growth Factor Receptor-1 biosynthesis
Vascular Endothelial Growth Factor Receptor-2 biosynthesis
Carnitine analogs & derivatives
Dermis metabolism
Endothelial Cells metabolism
Microcirculation drug effects
Neovascularization, Physiologic drug effects
Wound Healing drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 10
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 26473356
- Full Text :
- https://doi.org/10.1371/journal.pone.0140697