Back to Search Start Over

Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity.

Authors :
Meier DT
Tu LH
Zraika S
Hogan MF
Templin AT
Hull RL
Raleigh DP
Kahn SE
Source :
The Journal of biological chemistry [J Biol Chem] 2015 Dec 18; Vol. 290 (51), pp. 30475-85. Date of Electronic Publication: 2015 Oct 19.
Publication Year :
2015

Abstract

Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes.<br /> (© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.)

Details

Language :
English
ISSN :
1083-351X
Volume :
290
Issue :
51
Database :
MEDLINE
Journal :
The Journal of biological chemistry
Publication Type :
Academic Journal
Accession number :
26483547
Full Text :
https://doi.org/10.1074/jbc.M115.676692