Back to Search
Start Over
The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades.
- Source :
-
Journal of affective disorders [J Affect Disord] 2016 Jan 15; Vol. 190, pp. 429-438. Date of Electronic Publication: 2015 Oct 23. - Publication Year :
- 2016
-
Abstract
- Bipolar Disorder is a severe disease characterized by pathological mood swings from major depressive episodes to manic ones and vice versa. The biological underpinnings of Bipolar Disorder have yet to be defined. As a consequence, pharmacological treatments are suboptimal. In the present paper we test the hypothesis that the molecular pathways involved with the direct targets of lithium, hold significantly more genetic variations associated with BD. A molecular pathway approach finds its rationale in the polygenic nature of the disease. The pathways were tested in a sample of ∼ 7,000 patients and controls. Data are available from the public NIMH database. The definition of the pathways was conducted according to the National Cancer Institute (http://pid.nci.nih.gov/). As a result, 3 out of the 18 tested pathways related to lithium action resisted the permutation analysis and were found to be associated with BD. These pathways were related to Reelin, Integrins and Aurora. A pool of genes selected from the ones linked with the above pathways was further investigated in order to identify the fine molecular mechanics shared by our significant pathways and also their link with lithium mechanism of action. The data obtained point out to a possible involvement of microtubule-related mechanics.<br /> (Copyright © 2015 Elsevier B.V. All rights reserved.)
- Subjects :
- Adult
Bipolar Disorder drug therapy
Case-Control Studies
Databases, Genetic
Databases, Pharmaceutical
Female
Genetic Variation genetics
Humans
Male
Microtubules drug effects
Reelin Protein
Bipolar Disorder genetics
Cell Adhesion Molecules, Neuronal genetics
Extracellular Matrix Proteins genetics
Integrins genetics
Lithium pharmacology
Microtubules genetics
Nerve Tissue Proteins genetics
Serine Endopeptidases genetics
Signal Transduction drug effects
Signal Transduction genetics
Transcription Factors genetics
mRNA Cleavage and Polyadenylation Factors genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1573-2517
- Volume :
- 190
- Database :
- MEDLINE
- Journal :
- Journal of affective disorders
- Publication Type :
- Academic Journal
- Accession number :
- 26551401
- Full Text :
- https://doi.org/10.1016/j.jad.2015.10.016