Back to Search Start Over

Dissecting neural pathways for forgetting in Drosophila olfactory aversive memory.

Authors :
Shuai Y
Hirokawa A
Ai Y
Zhang M
Li W
Zhong Y
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2015 Dec 01; Vol. 112 (48), pp. E6663-72. Date of Electronic Publication: 2015 Nov 16.
Publication Year :
2015

Abstract

Recent studies have identified molecular pathways driving forgetting and supported the notion that forgetting is a biologically active process. The circuit mechanisms of forgetting, however, remain largely unknown. Here we report two sets of Drosophila neurons that account for the rapid forgetting of early olfactory aversive memory. We show that inactivating these neurons inhibits memory decay without altering learning, whereas activating them promotes forgetting. These neurons, including a cluster of dopaminergic neurons (PAM-β'1) and a pair of glutamatergic neurons (MBON-γ4>γ1γ2), terminate in distinct subdomains in the mushroom body and represent parallel neural pathways for regulating forgetting. Interestingly, although activity of these neurons is required for memory decay over time, they are not required for acute forgetting during reversal learning. Our results thus not only establish the presence of multiple neural pathways for forgetting in Drosophila but also suggest the existence of diverse circuit mechanisms of forgetting in different contexts.

Details

Language :
English
ISSN :
1091-6490
Volume :
112
Issue :
48
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
26627257
Full Text :
https://doi.org/10.1073/pnas.1512792112