Back to Search
Start Over
Loss of SIRT3 Provides Growth Advantage for B Cell Malignancies.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2016 Feb 12; Vol. 291 (7), pp. 3268-79. Date of Electronic Publication: 2015 Dec 02. - Publication Year :
- 2016
-
Abstract
- B cell malignancies comprise a diverse group of cancers that proliferate in lymph nodes, bone marrow, and peripheral blood. SIRT3 (sirtuin 3) is the major deacetylase within the mitochondrial matrix that promotes aerobic metabolism and controls reactive oxygen species (ROS) by deacetylating and activating isocitrate dehydrogenase 2 (IDH2) and superoxide dismutase 2 (SOD2). There is controversy as to whether SIRT3 acts as an oncogene or a tumor suppressor, and here we investigated its role in B cell malignancies. In mantle cell lymphoma patient samples, we found that lower SIRT3 protein expression was associated with worse overall survival. Further, SIRT3 protein expression was reduced in chronic lymphocytic leukemia primary samples and malignant B cell lines compared to primary B cells from healthy donors. This lower level of expression correlated with hyperacetylation of IDH2 and SOD2 mitochondrial proteins, lowered enzymatic activities, and higher ROS levels. Overexpression of SIRT3 decreased proliferation and diminished the Warburg-like phenotype in SIRT3-deficient cell lines, and this effect is largely dependent on deacetylation of IDH2 and SOD2. Lastly, depletion of SIRT3 from malignant B cell lines resulted in greater susceptibility to treatment with an ROS scavenger but did not result in greater sensitivity to inhibition of the hypoxia-inducible factor-1α pathway, suggesting that loss of SIRT3 increases proliferation via ROS-dependent but hypoxia-inducible factor-1α-independent mechanisms. Our study suggests that SIRT3 acts as a tumor suppressor in B cell malignancies, and activating the SIRT3 pathway might represent a novel therapeutic approach for treating B cell malignancies.<br /> (© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Subjects :
- Acetylation
Aged
Burkitt Lymphoma genetics
Burkitt Lymphoma pathology
Cell Line, Tumor
Cell Proliferation
Enzyme Activation
Gene Expression Regulation, Neoplastic
Humans
Isocitrate Dehydrogenase genetics
Isocitrate Dehydrogenase metabolism
Leukemia, Lymphocytic, Chronic, B-Cell genetics
Leukemia, Lymphocytic, Chronic, B-Cell pathology
Lymphoma, Follicular genetics
Lymphoma, Follicular pathology
Lymphoma, Mantle-Cell genetics
Lymphoma, Mantle-Cell pathology
Neoplasm Proteins antagonists & inhibitors
Neoplasm Proteins genetics
Neoplasm Staging
Protein Processing, Post-Translational
RNA Interference
Reactive Oxygen Species agonists
Reactive Oxygen Species antagonists & inhibitors
Recombinant Proteins chemistry
Recombinant Proteins metabolism
Sirtuin 3 antagonists & inhibitors
Sirtuin 3 genetics
Superoxide Dismutase antagonists & inhibitors
Superoxide Dismutase genetics
Superoxide Dismutase metabolism
Survival Analysis
Tumor Cells, Cultured
Burkitt Lymphoma metabolism
Leukemia, Lymphocytic, Chronic, B-Cell metabolism
Lymphoma, Follicular metabolism
Lymphoma, Mantle-Cell metabolism
Neoplasm Proteins metabolism
Reactive Oxygen Species metabolism
Sirtuin 3 metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 291
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 26631723
- Full Text :
- https://doi.org/10.1074/jbc.M115.702076