Back to Search Start Over

Effects of ketamine administration on the phosphorylation levels of CREB and TrKB and on oxidative damage after infusion of MEK inhibitor.

Authors :
Réus GZ
Abaleira HM
Titus SE
Arent CO
Michels M
da Luz JR
dos Santos MA
Carlessi AS
Matias BI
Bruchchen L
Steckert AV
Ceretta LB
Dal-Pizzol F
Quevedo J
Source :
Pharmacological reports : PR [Pharmacol Rep] 2016 Feb; Vol. 68 (1), pp. 177-84. Date of Electronic Publication: 2015 Aug 28.
Publication Year :
2016

Abstract

Background: Ketamine, an antagonist of N-methyl-d-aspartate (NMDA) receptors, has presented antidepressant effects in basic and clinical studies. The MAPK kinase (MEK) signaling pathway could be a target for novel antidepressant drugs and an important pathway involved in neuronal plasticity. Thus, this study evaluated the effects of the administration of ketamine on the phosphorylation of TrKB and CREB, and oxidative stress parameters in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc) rats, after the inhibition of MAPK pathway (PD184161).<br />Methods: Male adult Wistar rats were submitted to a surgical procedure to receive a single dose of a pharmacological inhibitor of MAPK (PD184161) at a dose of (0.1μg/μl) or vehicle. Then, they were divided: 1) vehicle+saline; 2) inhibitor PD184161+saline; 3) vehicle+ketamine 15mg/kg; and 4) inhibitor PD184161+ketamine 15mg/kg.<br />Results: MEK inhibitor and ketamine increased the phosphorylation of the transcription factor cAMP response element-binding protein (pCREB) and neurotrophic factor/tropomyosin related kinase B receptor (pTrKB) in the PFC, and decreased pCREB in the hippocampus. The MEK inhibitor abolished ketamine's effects in the hippocampus. In the amygdala, pCREB was decreased, and pTrKB was increased after MEK inhibitor plus ketamine. Ketamine increased the thiobarbituric acid reactive species (TBARS) in the PFC, hippocampus, amygdala, and NAc; MEK inhibitor antagonized these effects. The carbonyl was increased in the PFC by both ketamine and MEK inhibitor, but inhibitor infusion plus ketamine administration reduced this effect. In the amygdala, MEK inhibitor increased carbonyl.<br />Conclusion: Ketamine's effects on pCREB, pTrKB, and oxidative stress are mediated, at least in part, by a mechanism dependent of MAPK signaling inhibition.<br /> (Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.)

Details

Language :
English
ISSN :
2299-5684
Volume :
68
Issue :
1
Database :
MEDLINE
Journal :
Pharmacological reports : PR
Publication Type :
Academic Journal
Accession number :
26721370
Full Text :
https://doi.org/10.1016/j.pharep.2015.08.010