Back to Search
Start Over
Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia.
- Source :
-
Mammalian genome : official journal of the International Mammalian Genome Society [Mamm Genome] 2016 Apr; Vol. 27 (3-4), pp. 111-21. Date of Electronic Publication: 2016 Jan 23. - Publication Year :
- 2016
-
Abstract
- We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a (E157*Mhda)) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a (E157*Mhda) mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a (E157*Mhda) mice are the first mouse model for a mutation within the Fam46a gene.
- Subjects :
- Alkaline Phosphatase metabolism
Animals
Bone and Bones metabolism
Bone and Bones pathology
DNA Mutational Analysis
Disease Models, Animal
Enzyme Activation
Female
Gene Expression
Genotype
High-Throughput Nucleotide Sequencing
Male
Mice
Mice, Knockout
Phenotype
Bone Diseases, Developmental genetics
Bone Diseases, Developmental pathology
Codon, Nonsense
Exome
Subjects
Details
- Language :
- English
- ISSN :
- 1432-1777
- Volume :
- 27
- Issue :
- 3-4
- Database :
- MEDLINE
- Journal :
- Mammalian genome : official journal of the International Mammalian Genome Society
- Publication Type :
- Academic Journal
- Accession number :
- 26803617
- Full Text :
- https://doi.org/10.1007/s00335-016-9619-x