Back to Search
Start Over
Cloning and Characterization of a Flavonoid 3'-Hydroxylase Gene from Tea Plant (Camellia sinensis).
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2016 Feb 22; Vol. 17 (2), pp. 261. Date of Electronic Publication: 2016 Feb 22. - Publication Year :
- 2016
-
Abstract
- Tea leaves contain abundant flavan-3-ols, which include dihydroxylated and trihydroxylated catechins. Flavonoid 3'-hydroxylase (F3'H: EC 1.14.13.21) is one of the enzymes in the establishment of the hydroxylation pattern. A gene encoding F3'H, designated as CsF3'H, was isolated from Camellia sinensis with a homology-based cloning technique and deposited in the GenBank (GenBank ID: KT180309). Bioinformatic analysis revealed that CsF3'H was highly homologous with the characterized F3'Hs from other plant species. Four conserved cytochrome P450-featured motifs and three F3'H-specific conserved motifs were discovered in the protein sequence of CsF3'H. Enzymatic analysis of the heterologously expressed CsF3'H in yeast demonstrated that tea F3'H catalyzed the 3'-hydroxylation of naringenin, dihydrokaempferol and kaempferol. Apparent Km values for these substrates were 17.08, 143.64 and 68.06 μM, and their apparent Vmax values were 0.98, 0.19 and 0.44 pM·min(-1), respectively. Transcription level of CsF3'H in the new shoots, during tea seed germination was measured, along with that of other key genes for flavonoid biosynthesis using real-time PCR technique. The changes in 3',4'-flavan-3-ols, 3',4',5'-flavan-3-ols and flavan-3-ols, were consistent with the expression level of CsF3'H and other related genes in the leaves. In the study of nitrogen supply for the tea plant growth, our results showed the expression level of CsF3'H and all other tested genes increased in response to nitrogen depletion after 12 days of treatment, in agreement with a corresponding increase in 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols content in the leaves. All these results suggest the importance of CsF3'H in the biosynthesis of 3',4'-catechins, 3',4',5'-catechins and flavan 3-ols in tea leaves.
- Subjects :
- Camellia sinensis genetics
Camellia sinensis growth & development
Cytochrome P-450 Enzyme System chemistry
Cytochrome P-450 Enzyme System metabolism
Flavonoids biosynthesis
Germination
Plant Leaves enzymology
Plant Leaves genetics
Plant Proteins chemistry
Plant Proteins genetics
Plant Proteins metabolism
Plant Shoots enzymology
Plant Shoots genetics
Plant Shoots growth & development
Sequence Homology, Nucleic Acid
Camellia sinensis enzymology
Cloning, Molecular methods
Computational Biology methods
Cytochrome P-450 Enzyme System genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 17
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 26907264
- Full Text :
- https://doi.org/10.3390/ijms17020261