Back to Search
Start Over
Design and fabrication of a duoplasmatron extraction geometry and LEBT for the LANSCE H⁺ RFQ project.
- Source :
-
The Review of scientific instruments [Rev Sci Instrum] 2016 Feb; Vol. 87 (2), pp. 02B907. - Publication Year :
- 2016
-
Abstract
- The 750-keV H(+) Cockcroft-Walton at LANSCE will be replaced with a recently fabricated 4-rod Radio Frequency Quadrupole (RFQ) with injection energy of 35 keV. The existing duoplasmatron source extraction optics need to be modified to produce up to 35 mA of H(+) current with an emittance <0.02 π-cm-mrad (rms, norm) for injection into the RFQ. Parts for the new source have been fabricated and assembly is in process. We will use the existing duoplasmatron source with a newly designed extraction system and low energy beam transport (LEBT) for beam injection into the RFQ. In addition to source modifications, we need a new LEBT for transport and matching into the RFQ. The LEBT uses two magnetic solenoids with enough drift space between them to accommodate diagnostics and a beam deflector. The LEBT is designed to work over a range of space-charge neutralized currents and emittances. The LEBT is optimized in the sense that it minimizes the beam size in both solenoids for a point design of a given neutralized current and emittance. Special attention has been given to estimating emittance growth due to source extraction optics and solenoid aberrations. Examples of source-to-RFQ matching and emittance growth (due to both non-linear space charge and solenoid aberrations) are presented over a range of currents and emittances about the design point. A mechanical layout drawing will be presented along with the status of the source and LEBT, design, and fabrication.
Details
- Language :
- English
- ISSN :
- 1089-7623
- Volume :
- 87
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- The Review of scientific instruments
- Publication Type :
- Academic Journal
- Accession number :
- 26932079
- Full Text :
- https://doi.org/10.1063/1.4932315