Back to Search Start Over

Persistent effects of Libby amphibole and amosite asbestos following subchronic inhalation in rats.

Authors :
Gavett SH
Parkinson CU
Willson GA
Wood CE
Jarabek AM
Roberts KC
Kodavanti UP
Dodd DE
Source :
Particle and fibre toxicology [Part Fibre Toxicol] 2016 Apr 15; Vol. 13, pp. 17. Date of Electronic Publication: 2016 Apr 15.
Publication Year :
2016

Abstract

Background: Human exposure to Libby amphibole (LA) asbestos increases risk of lung cancer, mesothelioma, and non-malignant respiratory disease. This study evaluated potency and time-course effects of LA and positive control amosite (AM) asbestos fibers in male F344 rats following nose-only inhalation exposure.<br />Methods: Rats were exposed to air, LA (0.5, 3.5, or 25.0 mg/m(3) targets), or AM (3.5 mg/m(3) target) for 10 days and assessed for markers of lung inflammation, injury, and cell proliferation. Short-term results guided concentration levels for a stop-exposure study in which rats were exposed to air, LA (1.0, 3.3, or 10.0 mg/m(3)), or AM (3.3 mg/m(3)) 6 h/day, 5 days/week for 13 weeks, and assessed 1 day, 1, 3, and 18 months post-exposure. Fibers were relatively short; for 10 mg/m(3) LA, mean length of all structures was 3.7 μm and 1% were longer than 20 μm.<br />Results: Ten days exposure to 25.0 mg/m(3) LA resulted in significantly increased lung inflammation, fibrosis, bronchiolar epithelial cell proliferation and hyperplasia, and inflammatory cytokine gene expression compared to air. Exposure to 3.5 mg/m(3) LA resulted in modestly higher markers of acute lung injury and inflammation compared to AM. Following 13 weeks exposure, lung fiber burdens correlated with exposure mass concentrations, declining gradually over 18 months. LA (3.3 and 10.0 mg/m(3)) and AM produced significantly higher bronchoalveolar lavage markers of inflammation and lung tissue cytokines, Akt, and MAPK/ERK pathway components compared to air control from 1 day to 3 months post-exposure. Histopathology showed alveolar inflammation and interstitial fibrosis in all fiber-exposed groups up to 18 months post-exposure. Positive dose trends for incidence of alveolar epithelial hyperplasia and bronchiolar/alveolar adenoma or carcinoma were observed among LA groups.<br />Conclusions: Inhalation of relatively short LA fibers produced inflammatory, fibrogenic, and tumorigenic effects in rats which replicate essential attributes of asbestos-related disease in exposed humans. Fiber burden, inflammation, and activation of growth factor pathways may persist and contribute to lung tumorigenesis long after initial LA exposure. Fiber burden data are being used to develop a dosimetry model for LA fibers, which may provide insights on mode of action for hazard assessment.

Details

Language :
English
ISSN :
1743-8977
Volume :
13
Database :
MEDLINE
Journal :
Particle and fibre toxicology
Publication Type :
Academic Journal
Accession number :
27083413
Full Text :
https://doi.org/10.1186/s12989-016-0130-z