Back to Search Start Over

Multiyear greenhouse gas balances at a rewetted temperate peatland.

Authors :
Wilson D
Farrell CA
Fallon D
Moser G
Müller C
Renou-Wilson F
Source :
Global change biology [Glob Chang Biol] 2016 Dec; Vol. 22 (12), pp. 4080-4095. Date of Electronic Publication: 2016 May 14.
Publication Year :
2016

Abstract

Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long-term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO <subscript>2</subscript> ), methane (CH <subscript>4</subscript> ) and nitrous oxide (N <subscript>2</subscript> O) calculated for a 5-year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2-year data set), and with ten long-term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO <subscript>2</subscript> exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (R <subscript>eco</subscript> ) rather than gross primary production (GPP). CH <subscript>4</subscript> emissions were related to soil temperature and either water table level or plant biomass. N <subscript>2</subscript> O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO <subscript>2</subscript> emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5-year mean of annual balances) for the rewetted site were (±SD) -104 ± 80 g CO <subscript>2</subscript> -C m <superscript>-2</superscript>  yr <superscript>-1</superscript> (i.e. CO <subscript>2</subscript> sink) and 9 ± 2 g CH <subscript>4</subscript> -C m <superscript>-2</superscript>  yr <superscript>-1</superscript> (i.e. CH <subscript>4</subscript> source). Nearly a decade after rewetting, the GHG balance (100-year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO <subscript>2</subscript> sink to a source if triggered by slightly drier conditions.<br /> (© 2016 John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1365-2486
Volume :
22
Issue :
12
Database :
MEDLINE
Journal :
Global change biology
Publication Type :
Academic Journal
Accession number :
27099183
Full Text :
https://doi.org/10.1111/gcb.13325