Back to Search Start Over

MicroRNA-126 contributes to Niaspan treatment induced vascular restoration after diabetic retinopathy.

Authors :
Wang Y
Yan H
Source :
Scientific reports [Sci Rep] 2016 May 26; Vol. 6, pp. 26909. Date of Electronic Publication: 2016 May 26.
Publication Year :
2016

Abstract

Diabetic retinopathy (DR) is a serious microvascular complication of diabetes and a major cause of blindness in the developing world. Early diabetic retinopathy is characterized by a loss of pericytes and vascular endothelial cells, a breakdown of the blood-retinal barrier, vascular dysfunction and vascular-neuroinflammation. However, optimal treatment options and related mechanisms are still unclear. MicroRNA-126 (miR-126) plays a potential role in the pathogenesis in DR, which may regulate VEGF, Ang-1 and VCAM-1 expressions. This study investigated the therapeutic effects and mechanisms of Niaspan treatment of DR in diabetes (DM) rats. DM rats exhibits significantly decreased miR-126 and tight junction Claudin-5/Occludin/ZO-1 genes expression, and increased Blood retinal-barrier (BRB) breakdown, retinal apoptosis and VEGF/VEGFR, as well as VCAM-1/CD45 expressions in the retina compared to normal control group. Niaspan treatment significantly improved clinical and histopathological outcomes; decreased the expressions of VEGF/VEGFR, VCAM-1/CD45, apoptosis and BRB breakdown, significantly increased tight junction proteins and Ang-1/Tie-2 expressions, as well as increased retinal miR-126 expression compared to non-treatment diabetic rats. These data are the first to show that Niaspan treatment ameliorates DR through its repair vascular and inhibits inflammatory effects, and also suggest that the miR-126 pathway may contribute to Niaspan treatment induced benefit effects.

Details

Language :
English
ISSN :
2045-2322
Volume :
6
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
27225425
Full Text :
https://doi.org/10.1038/srep26909