Back to Search
Start Over
Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS.
- Source :
-
Nature communications [Nat Commun] 2016 May 31; Vol. 7, pp. 11696. Date of Electronic Publication: 2016 May 31. - Publication Year :
- 2016
-
Abstract
- Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 7
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 27241624
- Full Text :
- https://doi.org/10.1038/ncomms11696