Back to Search Start Over

3,19-isopropylideneandrographolide suppresses early gene expression of drug-resistant and wild type herpes simplex viruses.

Authors :
Kongyingyoes B
Priengprom T
Pientong C
Aromdee C
Suebsasana S
Ekalaksananan T
Source :
Antiviral research [Antiviral Res] 2016 Aug; Vol. 132, pp. 281-6. Date of Electronic Publication: 2016 Jul 15.
Publication Year :
2016

Abstract

A diterpenoid lactone, 3,19-isopropylideneandrographolide (IPAD) compound isolated from Andrographis paniculata (Burm. f.) Nees, has been reported to inhibit herpes simplex virus type 1 (HSV-1) infection at the post-entry step. To identify the molecular target of IPAD, this study characterized the inhibitory effect of IPAD on infection of Vero cells by HSV-1, HSV-2 and a drug-resistant (DR) HSV-1 strain ACGr4 (acyclovir-resistant and thymidine kinase (TK)-deficient). Viral production, gene and protein expression were determined using plaque assays, quantitative RT-PCR and western blotting, respectively. The results showed that IPAD inhibited HSV-1, HSV-2 and DR-HSV-1 infections at 6-12 h post-infection, a time that corresponded with E gene expression. IPAD completely suppressed ICP8 transcription and translation as well as DNA replication and gD expression in the three strains tested, while acyclovir suppressed transcription and translation of UL30 and gD of HSV-2, HSV-1, but had no effect on DR-HSV-1. These results showed that IPAD has a different molecular target from acyclovir and might therefore be an alternative drug for HSV-1 and HSV-2 wild types and DR-HSV-1 strains.<br /> (Copyright © 2016 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-9096
Volume :
132
Database :
MEDLINE
Journal :
Antiviral research
Publication Type :
Academic Journal
Accession number :
27424493
Full Text :
https://doi.org/10.1016/j.antiviral.2016.07.012