Back to Search Start Over

Investigating the Role of the Stringent Response in Lipid Modifications during the Stationary Phase in E. coli by Direct Analysis with Time-of-Flight-Secondary Ion Mass Spectrometry.

Authors :
Wehrli PM
Angerer TB
Farewell A
Fletcher JS
Gottfries J
Source :
Analytical chemistry [Anal Chem] 2016 Sep 06; Vol. 88 (17), pp. 8680-8. Date of Electronic Publication: 2016 Aug 12.
Publication Year :
2016

Abstract

Escherichia coli is able to rapidly adjust the biophysical properties of its membrane phospholipids to adapt to environmental challenges including starvation stress. These membrane lipid modifications were investigated in glucose starved E. coli cultures and compared to a ΔrelAΔspoT (ppGpp(0)) mutant strain of E. coli, deficient in the stringent response, by means of time-of-flight-secondary ion mass spectrometry (TOF-SIMS). Recent advances in TOF-SIMS, through the implementation of gas cluster ion beams (GCIBs), now permit the analysis of higher mass species from native, underivatized, biological specimen, i.e., intact bacterial cells. Cultures in stationary phase were found to exhibit a radically different lipid composition as compared to cultures in the exponential growth phase. Wild-type E. coli reacted upon carbon starvation by lipid modifications including elongation, cyclopropanation, and increased cardiolipin formation. Observations are consistent with variants of cardiolipins (CL), phosphatidylglycerols (PG), phosphatidylethanolamines (PE), phosphatidic acids (PA), and fatty acids. Notably, despite having a proteomic profile and a gene expression profile somewhat similar to the wild-type during growth, the ppGpp(0) mutant E. coli strain was found to exhibit modified phospholipids corresponding to unsaturated analogues of those found in the wild-type. We concluded that the ppGpp(0) mutant reacts upon starvation stress by elongation and desaturation of fatty acyl chains, implying that only the last step of the lipid modification, the cyclopropanation, is under stringent control. These observations suggest alternative stress response mechanisms and illustrate the role of the RelA and SpoT enzymes in the biosynthetic pathway underlying these lipid modifications.

Details

Language :
English
ISSN :
1520-6882
Volume :
88
Issue :
17
Database :
MEDLINE
Journal :
Analytical chemistry
Publication Type :
Academic Journal
Accession number :
27479574
Full Text :
https://doi.org/10.1021/acs.analchem.6b01981