Back to Search Start Over

Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle.

Authors :
Magnabosco CU
Lopes FB
Fragoso RC
Eifert EC
Valente BD
Rosa GJ
Sainz RD
Source :
Journal of animal science [J Anim Sci] 2016 Jul; Vol. 94 (7), pp. 2752-60.
Publication Year :
2016

Abstract

Zebu () cattle, mostly of the Nellore breed, comprise more than 80% of the beef cattle in Brazil, given their tolerance of the tropical climate and high resistance to ectoparasites. Despite their advantages for production in tropical environments, zebu cattle tend to produce tougher meat than Bos taurus breeds. Traditional genetic selection to improve meat tenderness is constrained by the difficulty and cost of phenotypic evaluation for meat quality. Therefore, genomic selection may be the best strategy to improve meat quality traits. This study was performed to compare the accuracies of different Bayesian regression models in predicting molecular breeding values for meat tenderness in Polled Nellore cattle. The data set was composed of Warner-Bratzler shear force (WBSF) of longissimus muscle from 205, 141, and 81 animals slaughtered in 2005, 2010, and 2012, respectively, which were selected and mated so as to create extreme segregation for WBSF. The animals were genotyped with either the Illumina BovineHD (HD; 777,000 from 90 samples) chip or the GeneSeek Genomic Profiler (GGP Indicus HD; 77,000 from 337 samples). The quality controls of SNP were Hard-Weinberg Proportion -value ≥ 0.1%, minor allele frequency > 1%, and call rate > 90%. The FImpute program was used for imputation from the GGP Indicus HD chip to the HD chip. The effect of each SNP was estimated using ridge regression, least absolute shrinkage and selection operator (LASSO), Bayes A, Bayes B, and Bayes Cπ methods. Different numbers of SNP were used, with 1, 2, 3, 4, 5, 7, 10, 20, 40, 60, 80, or 100% of the markers preselected based on their significance test (-value from genomewide association studies [GWAS]) or randomly sampled. The prediction accuracy was assessed by the correlation between genomic breeding value and the observed WBSF phenotype, using a leave-one-out cross-validation methodology. The prediction accuracies using all markers were all very similar for all models, ranging from 0.22 (Bayes Cπ) to 0.25 (Bayes B). When preselecting SNP based on GWAS results, the highest correlation (0.27) between WBSF and the genomic breeding value was achieved using the Bayesian LASSO model with 15,030 (3%) markers. Although this study used relatively few animals, the design of the segregating population ensured wide genetic variability for meat tenderness, which was important to achieve acceptable accuracy of genomic prediction. Although all models showed similar levels of prediction accuracy, some small advantages were observed with the Bayes B approach when higher numbers of markers were preselected based on their -values resulting from a GWAS analysis.

Details

Language :
English
ISSN :
1525-3163
Volume :
94
Issue :
7
Database :
MEDLINE
Journal :
Journal of animal science
Publication Type :
Academic Journal
Accession number :
27482662
Full Text :
https://doi.org/10.2527/jas.2016-0279