Back to Search
Start Over
Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism.
- Source :
-
Blood [Blood] 2016 Nov 17; Vol. 128 (20), pp. 2423-2434. Date of Electronic Publication: 2016 Aug 16. - Publication Year :
- 2016
-
Abstract
- Hyperfibrinolysis is a systemic condition occurring in various clinical disorders such as trauma, liver cirrhosis, and leukemia. Apart from increased bleeding tendency, the pathophysiological consequences of hyperfibrinolysis remain largely unknown. Our aim was to develop an experimental model of hyperfibrinolysis and to study its effects on the homeostasis of the blood-brain barrier (BBB). We induced a sustained hyperfibrinolytic state in mice by hydrodynamic transfection of a plasmid encoding for tissue-type plasminogen activator (tPA). As revealed by near-infrared fluorescence imaging, hyperfibrinolytic mice presented a significant increase in BBB permeability. Using a set of deletion variants of tPA and pharmacological approaches, we demonstrated that this effect was independent of N-methyl-D-aspartate receptor, low-density lipoprotein-related protein, protease-activated receptor-1, or matrix metalloproteinases. In contrast, we provide evidence that hyperfibrinolysis-induced BBB leakage is dependent on plasmin-mediated generation of bradykinin and subsequent activation of bradykinin B2 receptors. Accordingly, this effect was prevented by icatibant, a clinically available B2 receptor antagonist. In agreement with these preclinical data, bradykinin generation was also observed in humans in a context of acute pharmacological hyperfibrinolysis. Altogether, these results suggest that B2 receptor blockade may be a promising strategy to prevent the deleterious effects of hyperfibrinolysis on the homeostasis of the BBB.<br /> (© 2016 by The American Society of Hematology.)
- Subjects :
- Animals
Blood-Brain Barrier drug effects
Bradykinin metabolism
Bradykinin B2 Receptor Antagonists pharmacology
Brain drug effects
Brain metabolism
Capillary Permeability drug effects
Capillary Permeability genetics
Fibrinolysin metabolism
Fibrinolysis drug effects
Fibrinolysis genetics
Hydrodynamics
Mice
Mice, Transgenic
Receptor, Bradykinin B2 genetics
Receptor, Bradykinin B2 metabolism
Signal Transduction drug effects
Signal Transduction genetics
Tissue Plasminogen Activator genetics
Tissue Plasminogen Activator metabolism
Blood-Brain Barrier metabolism
Bradykinin physiology
Capillary Permeability physiology
Fibrinolysin physiology
Fibrinolysis physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1528-0020
- Volume :
- 128
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Blood
- Publication Type :
- Academic Journal
- Accession number :
- 27531677
- Full Text :
- https://doi.org/10.1182/blood-2016-03-705384