Back to Search
Start Over
Puerarin Suppresses Na+-K+-ATPase-Mediated Systemic Inflammation and CD36 Expression, and Alleviates Cardiac Lipotoxicity In Vitro and In Vivo.
- Source :
-
Journal of cardiovascular pharmacology [J Cardiovasc Pharmacol] 2016 Dec; Vol. 68 (6), pp. 465-472. - Publication Year :
- 2016
-
Abstract
- Puerarin, a type of isoflavone, was shown to have multiple protective effects on myocardial injury. The objective of this study was to investigate the role of puerarin in the progression of lipotoxic cardiomyopathy. Primary cardiomyocytes were isolated from FATP1 transgenic (Tg) mice with lipotoxic cardiomyopathy, and various concentrations of puerarin were used to incubate with the cardiomyocytes. Our results showed low-dose puerarin (≤20 μM) treatment increased the cell viability and decreased the accumulation of free fatty acid (FFA). The data on enzyme-linked immunosorbent assay indicated that 15 μM puerarin treatment greatly increased Na-K-ATPase activity and decreased C-reactive protein secretion, thus suppressing the expression of CD36, a key contributor to the FFA accumulation. Additionally, low-dose puerarin (≤100 mg/kg body weight) administration improved Na-K-ATPase activity. Our data on serum analysis and histological detection in vivo indicated that systemic inflammation, CD36-induced lipid infiltration, and cardiomyocyte apoptosis were markedly alleviated in Tg mice injected with 90 mg/kg dose of puerarin. Finally, the uptake rates of H-palmitate and C-glucose were monitored on ex vivo working hearts that were obtained from wild-type (WT), Tg-control, and Tg-puerarin mice. Compared with WT hearts, Tg hearts displayed a significant decrease in Na/K-ATPase activity and glucose consumption rate and an increase in palmitate uptake rate and FFA accumulation. In Tg-puerarin hearts, Na/K-ATPase activity and glucose consumption rate were significantly rescued, and palmitate uptake and FFA accumulation were sharply suppressed. In conclusion, low-dose puerarin suppressed Na-K-ATPase-mediated CD36 expression and systemic inflammation and alleviated cardiac lipotoxicity in vitro and in vivo.
- Subjects :
- Animals
CD36 Antigens genetics
CD36 Antigens metabolism
Cells, Cultured
Dose-Response Relationship, Drug
Fatty Acids, Nonesterified metabolism
Gene Expression
Inflammation drug therapy
Inflammation metabolism
Isoflavones therapeutic use
Mice
Mice, Inbred C57BL
Mice, Transgenic
Myocytes, Cardiac metabolism
Sodium-Potassium-Exchanging ATPase metabolism
Vasodilator Agents therapeutic use
CD36 Antigens antagonists & inhibitors
Fatty Acids, Nonesterified antagonists & inhibitors
Isoflavones pharmacology
Myocytes, Cardiac drug effects
Sodium-Potassium-Exchanging ATPase antagonists & inhibitors
Vasodilator Agents pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1533-4023
- Volume :
- 68
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of cardiovascular pharmacology
- Publication Type :
- Academic Journal
- Accession number :
- 27606935
- Full Text :
- https://doi.org/10.1097/FJC.0000000000000431