Back to Search Start Over

Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease.

Authors :
Andersen JV
Christensen SK
Aldana BI
Nissen JD
Tanila H
Waagepetersen HS
Source :
Neurochemical research [Neurochem Res] 2017 Jun; Vol. 42 (6), pp. 1589-1598. Date of Electronic Publication: 2016 Sep 29.
Publication Year :
2017

Abstract

Alterations in brain energy metabolism have been suggested to be of fundamental importance for the development of Alzheimer's disease (AD). However, specific changes in brain energetics in the early stages of AD are poorly known. The aim of this study was to investigate cerebral energy metabolism in the APPswe/PSEN1dE9 mouse prior to amyloid plaque formation. Acutely isolated cerebral cortical and hippocampal slices of 3-month-old APPswe/PSEN1dE9 and wild-type control mice were incubated in media containing [U- <superscript>13</superscript> C]glucose, [1,2- <superscript>13</superscript> C]acetate or [U- <superscript>13</superscript> C]glutamine, and tissue extracts were analyzed by mass spectrometry. The ATP synthesis rate of isolated whole-brain mitochondria was assessed by an on-line luciferin-luciferase assay. Significantly increased <superscript>13</superscript> C labeling of intracellular lactate and alanine and decreased tricarboxylic acid (TCA) cycle activity were observed from cerebral cortical slices of APPswe/PSEN1dE9 mice incubated in media containing [U- <superscript>13</superscript> C]glucose. No changes in glial [1,2- <superscript>13</superscript> C]acetate metabolism were observed. Cerebral cortical slices from APPswe/PSEN1dE9 mice exhibited a reduced capacity for uptake and oxidative metabolism of glutamine. Furthermore, the ATP synthesis rate tended to be decreased in isolated whole-brain mitochondria of APPswe/PSEN1dE9 mice. Thus, several cerebral metabolic changes are evident in the APPswe/PSEN1dE9 mouse prior to amyloid plaque deposition, including altered glucose metabolism, hampered glutamine processing and mitochondrial dysfunctions.

Details

Language :
English
ISSN :
1573-6903
Volume :
42
Issue :
6
Database :
MEDLINE
Journal :
Neurochemical research
Publication Type :
Academic Journal
Accession number :
27686658
Full Text :
https://doi.org/10.1007/s11064-016-2070-2