Back to Search Start Over

α-Melanocyte stimulating hormone promotes muscle glucose uptake via melanocortin 5 receptors.

Authors :
Enriori PJ
Chen W
Garcia-Rudaz MC
Grayson BE
Evans AE
Comstock SM
Gebhardt U
Müller HL
Reinehr T
Henry BA
Brown RD
Bruce CR
Simonds SE
Litwak SA
McGee SL
Luquet S
Martinez S
Jastroch M
Tschöp MH
Watt MJ
Clarke IJ
Roth CL
Grove KL
Cowley MA
Source :
Molecular metabolism [Mol Metab] 2016 Aug 05; Vol. 5 (10), pp. 807-822. Date of Electronic Publication: 2016 Aug 05 (Print Publication: 2016).
Publication Year :
2016

Abstract

Objective: Central melanocortin pathways are well-established regulators of energy balance. However, scant data exist about the role of systemic melanocortin peptides. We set out to determine if peripheral α-melanocyte stimulating hormone (α-MSH) plays a role in glucose homeostasis and tested the hypothesis that the pituitary is able to sense a physiological increase in circulating glucose and responds by secreting α-MSH.<br />Methods: We established glucose-stimulated α-MSH secretion using humans, non-human primates, and mouse models. Continuous α-MSH infusions were performed during glucose tolerance tests and hyperinsulinemic-euglycemic clamps to evaluate the systemic effect of α-MSH in glucose regulation. Complementary ex vivo and in vitro techniques were employed to delineate the direct action of α-MSH via the melanocortin 5 receptor (MC5R)-PKA axis in skeletal muscles. Combined treatment of non-selective/selective phosphodiesterase inhibitor and α-MSH was adopted to restore glucose tolerance in obese mice.<br />Results: Here we demonstrate that pituitary secretion of α-MSH is increased by glucose. Peripheral α-MSH increases temperature in skeletal muscles, acts directly on soleus and gastrocnemius muscles to significantly increase glucose uptake, and enhances whole-body glucose clearance via the activation of muscle MC5R and protein kinase A. These actions are absent in obese mice, accompanied by a blunting of α-MSH-induced cAMP levels in skeletal muscles of obese mice. Both selective and non-selective phosphodiesterase inhibition restores α-MSH induced skeletal muscle glucose uptake and improves glucose disposal in obese mice.<br />Conclusion: These data describe a novel endocrine circuit that modulates glucose homeostasis by pituitary α-MSH, which increases muscle glucose uptake and thermogenesis through the activation of a MC5R-PKA-pathway, which is disrupted in obesity.

Details

Language :
English
ISSN :
2212-8778
Volume :
5
Issue :
10
Database :
MEDLINE
Journal :
Molecular metabolism
Publication Type :
Academic Journal
Accession number :
27688995
Full Text :
https://doi.org/10.1016/j.molmet.2016.07.009