Back to Search
Start Over
Enzymatic Activity and Thermodynamic Stability of Biliverdin IXβ Reductase Are Maintained by an Active Site Serine.
- Source :
-
Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2017 Feb 03; Vol. 23 (8), pp. 1891-1900. Date of Electronic Publication: 2017 Jan 11. - Publication Year :
- 2017
-
Abstract
- Biliverdin reductase IXβ (BLVRB) is a crucial enzyme in heme metabolism. Recent studies in humans have identified a loss-of-function mutation (Ser111Leu) that unmasks a fundamentally important role in hematopoiesis. We have undertaken experimental and thermodynamic modeling studies to provide further insight into the role of the cofactor in substrate accessibility and protein folding properties regulating BLVRB catalytic mechanisms. Site-directed mutagenesis with molecular dynamic (MD) simulations establish the critical role of NAD(P)H-dependent conformational changes on substrate accessibility by forming the "hydrophobic pocket", along with identification of a single key residue (Arg35) modulating NADPH/NADH selectivity. Loop80 and Loop120 block the hydrophobic substrate binding pocket in apo BLVRB (open), whereas movement of these structures after cofactor binding results in the "closed" (catalytically active) conformation. Both enzymatic activity and thermodynamic stability are affected by mutation(s) involving Ser111, which is located in the core of the BLVRB active site. This work 1) elucidates the crucial role of Ser111 in enzymatic catalysis and thermodynamic stability by active site hydrogen bond network; 2) defines a dynamic model for apo BLVRB extending beyond the crystal structure of the binary BLVRB/NADP <superscript>+</superscript> complex; 3) provides a structural basis for the "encounter" and "equilibrium" states of the binary complex, which are regulated by NAD(P)H.<br /> (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Subjects :
- Animals
Binding Sites
Catalytic Domain
Hydrogen Bonding
Kinetics
Molecular Dynamics Simulation
Mutagenesis, Site-Directed
NAD chemistry
Oxidoreductases Acting on CH-CH Group Donors genetics
Oxidoreductases Acting on CH-CH Group Donors metabolism
Protein Stability
Serine metabolism
Substrate Specificity
Thermodynamics
Oxidoreductases Acting on CH-CH Group Donors chemistry
Serine chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1521-3765
- Volume :
- 23
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Chemistry (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 27897348
- Full Text :
- https://doi.org/10.1002/chem.201604517