Back to Search Start Over

The mechanics and design of a lightweight three-dimensional graphene assembly.

Authors :
Qin Z
Jung GS
Kang MJ
Buehler MJ
Source :
Science advances [Sci Adv] 2017 Jan 06; Vol. 3 (1), pp. e1601536. Date of Electronic Publication: 2017 Jan 06 (Print Publication: 2017).
Publication Year :
2017

Abstract

Recent advances in three-dimensional (3D) graphene assembly have shown how we can make solid porous materials that are lighter than air. It is plausible that these solid materials can be mechanically strong enough for applications under extreme conditions, such as being a substitute for helium in filling up an unpowered flight balloon. However, knowledge of the elastic modulus and strength of the porous graphene assembly as functions of its structure has not been available, preventing evaluation of its feasibility. We combine bottom-up computational modeling with experiments based on 3D-printed models to investigate the mechanics of porous 3D graphene materials, resulting in new designs of carbon materials. Our study reveals that although the 3D graphene assembly has an exceptionally high strength at relatively high density (given the fact that it has a density of 4.6% that of mild steel and is 10 times as strong as mild steel), its mechanical properties decrease with density much faster than those of polymer foams. Our results provide critical densities below which the 3D graphene assembly starts to lose its mechanical advantage over most polymeric cellular materials.

Details

Language :
English
ISSN :
2375-2548
Volume :
3
Issue :
1
Database :
MEDLINE
Journal :
Science advances
Publication Type :
Academic Journal
Accession number :
28070559
Full Text :
https://doi.org/10.1126/sciadv.1601536