Back to Search
Start Over
Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis.
- Source :
-
BMB reports [BMB Rep] 2017 Feb; Vol. 50 (2), pp. 58-59. - Publication Year :
- 2017
-
Abstract
- The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the TGFβ/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated TGFβ type I receptor expression by binding to αvβ3 integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating TGFβ-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis. [BMB Reports 2017; 50(2): 58-59].
- Subjects :
- Animals
Cells, Cultured
Humans
Liver Cirrhosis metabolism
Liver Cirrhosis pathology
Mesenchymal Stem Cell Transplantation
Metabolome physiology
Mice
Antigens, Surface isolation & purification
Antigens, Surface physiology
Liver Cirrhosis prevention & control
Mesenchymal Stem Cells metabolism
Milk Proteins isolation & purification
Milk Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1976-670X
- Volume :
- 50
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- BMB reports
- Publication Type :
- Periodical
- Accession number :
- 28115038
- Full Text :
- https://doi.org/10.5483/bmbrep.2017.50.2.012