Back to Search
Start Over
Vapor-solid synthesis of monolithic single-crystalline CoP nanowire electrodes for efficient and robust water electrolysis.
- Source :
-
Chemical science [Chem Sci] 2017 Apr 01; Vol. 8 (4), pp. 2952-2958. Date of Electronic Publication: 2017 Jan 23. - Publication Year :
- 2017
-
Abstract
- Electrochemical water splitting into hydrogen and oxygen is a promising technology for sustainable energy storage. The development of earth-abundant transition metal phosphides (TMPs) to catalyze the hydrogen evolution reaction (HER) and TMP-derived oxy-hydroxides to catalyze the oxygen evolution reaction (OER) has recently drawn considerable attention. However, most monolithically integrated metal phosphide electrodes are prepared by laborious multi-step methods and their operational stability at high current densities has been rarely studied. Herein, we report a novel vapor-solid synthesis of single-crystalline cobalt phosphide nanowires (CoP NWs) on a porous Co foam and demonstrate their use in overall water splitting. The CoP NWs grown on the entire surface of the porous Co foam ligaments have a large aspect ratio, and hence are able to provide a large catalytically accessible surface over a given geometrical area. Comprehensive investigation shows that under the OER conditions CoP NWs are progressively and conformally converted to CoOOH through electrochemical in situ oxidation/dephosphorization; the latter serving as an active species to catalyze the OER. The in situ oxidized electrode shows exceptional electrocatalytic performance for the OER in 1.0 M KOH, delivering 100 mA cm <superscript>-2</superscript> at an overpotential ( η ) of merely 300 mV and a small Tafel slope of 78 mV dec <superscript>-1</superscript> as well as excellent stability at various current densities. Meanwhile, the CoP NW electrode exhibits superior catalytic activity for the HER in the same electrolyte, affording -100 mA cm <superscript>-2</superscript> at η = 244 mV and showing outstanding stability. An alkaline electrolyzer composed of two symmetrical CoP NW electrodes can deliver 10 and 100 mA cm <superscript>-2</superscript> at low cell voltages of 1.56 and 1.78 V, respectively. The CoP NW electrolyzer demonstrates exceptional long-term stability for overall water splitting, capable of working at 20 and 100 mA cm <superscript>-2</superscript> for 1000 h without obvious degradation.
Details
- Language :
- English
- ISSN :
- 2041-6520
- Volume :
- 8
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Chemical science
- Publication Type :
- Academic Journal
- Accession number :
- 28451361
- Full Text :
- https://doi.org/10.1039/c6sc05167g