Back to Search Start Over

Triethanolamine doped multilayer MoS 2 field effect transistors.

Authors :
Ryu MY
Jang HK
Lee KJ
Piao M
Ko SP
Shin M
Huh J
Kim GT
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2017 May 24; Vol. 19 (20), pp. 13133-13139.
Publication Year :
2017

Abstract

Chemical doping has been investigated as an alternative method of conventional ion implantation for two-dimensional materials. We herein report chemically doped multilayer molybdenum disulfide (MoS <subscript>2</subscript> ) field effect transistors (FETs) through n-type channel doping, wherein triethanolamine (TEOA) is used as an n-type dopant. As a result of the TEOA doping process, the electrical performances of multilayer MoS <subscript>2</subscript> FETs were enhanced at room temperature. Extracted field effect mobility was estimated to be ∼30 cm <superscript>2</superscript> V <superscript>-1</superscript> s <superscript>-1</superscript> after the surface doping process, which is 10 times higher than that of the pristine device. Subthreshold swing and contact resistance were also improved after the TEOA doping process. The enhancement of the subthreshold swing was demonstrated by using an independent FET model. Furthermore, we found that the doping level can be effectively controlled by the heat treatment method. These results demonstrate a promising material system that is easily controlled with high performance, while elucidating the underlying mechanism of improved electrical properties by the doping effect in a multilayered scheme.

Details

Language :
English
ISSN :
1463-9084
Volume :
19
Issue :
20
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
28489103
Full Text :
https://doi.org/10.1039/c7cp00589j