Back to Search Start Over

Interaction between tricyclic and nontricyclic 5-hydroxytryptamine uptake inhibitors and the presynaptic 5-hydroxytryptamine inhibitory autoreceptors in the rat hypothalamus.

Authors :
Galzin AM
Moret C
Verzier B
Langer SZ
Source :
The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 1985 Oct; Vol. 235 (1), pp. 200-11.
Publication Year :
1985

Abstract

In slices of the rat hypothalamus prelabeled with [3H]-5-hydroxytryptamine [( 3H]-5-HT), exposure to lysergic acid diethylamide or 5-methoxytryptamine decreased, in a concentration-dependent manner, the release of 3H-transmitter elicited by electrical stimulation. These inhibitory effects were antagonized by the 5-HT receptor antagonist methiothepin (1 microM). Exposure to methiothepin on its own increased in a concentration-dependent manner the electrically evoked overflow of [3H]-5-HT. Exposure to tricyclic antidepressants, like imipramine and amitriptyline, and to nontricyclic 5-HT uptake inhibitors, like paroxetine and citalopram, did not modify by themselves the electrically evoked overflow of [3H]-5-HT. Yet, the four inhibitors of neuronal uptake of 5-HT, antagonized the inhibition by lysergic acid diethylamide or 5-methoxytryptamine of the electrically induced release of [3H]-5-HT. After depletion of endogenous stores of 5-HT by pretreatment with para-chlorophenylalanine (300 mg/kg i.p.), the inhibitors of 5-HT uptake increased the electrically evoked release of [3H]-5-HT in a concentration-dependent manner. Their order of potency to enhance 5-HT overflow after pretreatment with parachlorophenylalanine paralleled their potency at inhibiting neuronal uptake of 5-HT (paroxetine = citalopram greater than imipramine greater than amitriptyline). In para-chlorophenylalanine-treated rat hypothalamic slices, these inhibitors of 5-HT uptake antagonized the inhibition by 5-HT autoreceptor agonists of the electrically evoked release of [3H]-5-HT to a similar extent than was observed in control rats. It is concluded that inhibition of 5-HT uptake reduces the effectiveness of 5-HT autoreceptor agonists to inhibit the electrically evoked release of [3H]-5-HT, irrespective of the chemical structure of the uptake inhibitor or of the levels of endogenous 5-HT achieved in the synaptic gap.

Details

Language :
English
ISSN :
0022-3565
Volume :
235
Issue :
1
Database :
MEDLINE
Journal :
The Journal of pharmacology and experimental therapeutics
Publication Type :
Academic Journal
Accession number :
2864432