Back to Search
Start Over
Heterodimerization of Arabidopsis calcium/proton exchangers contributes to regulation of guard cell dynamics and plant defense responses.
- Source :
-
Journal of experimental botany [J Exp Bot] 2017 Jul 10; Vol. 68 (15), pp. 4171-4183. - Publication Year :
- 2017
-
Abstract
- Arabidopsis thaliana cation exchangers (CAX1 and CAX3) are closely related tonoplast-localized calcium/proton (Ca2+/H+) antiporters that contribute to cellular Ca2+ homeostasis. CAX1 and CAX3 were previously shown to interact in yeast; however, the function of this complex in plants has remained elusive. Here, we demonstrate that expression of CAX1 and CAX3 occurs in guard cells. Additionally, CAX1 and CAX3 are co-expressed in mesophyll tissue in response to wounding or flg22 treatment, due to the induction of CAX3 expression. Having shown that the transporters can be co-expressed in the same cells, we demonstrate that CAX1 and CAX3 can form homomeric and heteromeric complexes in plants. Consistent with the formation of a functional CAX1-CAX3 complex, CAX1 and CAX3 integrated into the yeast genome suppressed a Ca2+-hypersensitive phenotype of mutants defective in vacuolar Ca2+ transport, and demonstrated enzyme kinetics different from those of either CAX protein expressed by itself. We demonstrate that the interactions between CAX proteins contribute to the functioning of stomata, because stomata were more closed in cax1-1, cax3-1, and cax1-1/cax3-1 loss-of-function mutants due to an inability to buffer Ca2+ effectively. We hypothesize that the formation of CAX1-CAX3 complexes may occur in the mesophyll to affect intracellular Ca2+ signaling during defense responses.<br /> (© The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.)
- Subjects :
- Antiporters chemistry
Antiporters metabolism
Arabidopsis Proteins chemistry
Arabidopsis Proteins metabolism
Cation Transport Proteins chemistry
Cation Transport Proteins metabolism
Mesophyll Cells metabolism
Protein Multimerization
Saccharomyces cerevisiae genetics
Antiporters genetics
Arabidopsis genetics
Arabidopsis metabolism
Arabidopsis Proteins genetics
Cation Transport Proteins genetics
Plant Stomata metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1460-2431
- Volume :
- 68
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Journal of experimental botany
- Publication Type :
- Academic Journal
- Accession number :
- 28645169
- Full Text :
- https://doi.org/10.1093/jxb/erx209