Back to Search Start Over

Single-component supported lipid bilayers probed using broadband nonlinear optics.

Authors :
Olenick LL
Chase HM
Fu L
Zhang Y
McGeachy AC
Dogangun M
Walter SR
Wang HF
Geiger FM
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2018 Jan 31; Vol. 20 (5), pp. 3063-3072.
Publication Year :
2018

Abstract

Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm <superscript>-1</superscript> , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm <superscript>-1</superscript> and another at ∼2880 cm <superscript>-1</superscript> . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H <subscript>2</subscript> O-D <subscript>2</subscript> O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

Details

Language :
English
ISSN :
1463-9084
Volume :
20
Issue :
5
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
28721414
Full Text :
https://doi.org/10.1039/c7cp02549a