Back to Search Start Over

Human CD22 Inhibits Murine B Cell Receptor Activation in a Human CD22 Transgenic Mouse Model.

Authors :
Bednar KJ
Shanina E
Ballet R
Connors EP
Duan S
Juan J
Arlian BM
Kulis MD
Butcher EC
Fung-Leung WP
Rao TS
Paulson JC
Macauley MS
Source :
Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2017 Nov 01; Vol. 199 (9), pp. 3116-3128. Date of Electronic Publication: 2017 Sep 29.
Publication Year :
2017

Abstract

CD22, a sialic acid-binding Ig-type lectin (Siglec) family member, is an inhibitory coreceptor of the BCR with established roles in health and disease. The restricted expression pattern of CD22 on B cells and most B cell lymphomas has made CD22 a therapeutic target for B cell-mediated diseases. Models to better understand how in vivo targeting of CD22 translates to human disease are needed. In this article, we report the development of a transgenic mouse expressing human CD22 (hCD22) in B cells and assess its ability to functionally substitute for murine CD22 (mCD22) for regulation of BCR signaling, Ab responses, homing, and tolerance. Expression of hCD22 on transgenic murine B cells is comparable to expression on human primary B cells, and it colocalizes with mCD22 on the cell surface. Murine B cells expressing only hCD22 have identical calcium (Ca <superscript>2+</superscript> ) flux responses to anti-IgM as mCD22-expressing wild-type B cells. Furthermore, hCD22 transgenic mice on an mCD22 <superscript>-/-</superscript> background have restored levels of marginal zone B cells and Ab responses compared with deficiencies observed in CD22 <superscript>-/-</superscript> mice. Consistent with these observations, hCD22 transgenic mice develop normal humoral responses in a peanut allergy oral sensitization model. Homing of B cells to Peyer's patches was partially rescued by expression of hCD22 compared with CD22 <superscript>-/-</superscript> B cells, although not to wild-type levels. Notably, Siglec-engaging antigenic liposomes formulated with an hCD22 ligand were shown to prevent B cell activation, increase cell death, and induce tolerance in vivo. This hCD22 transgenic mouse will be a valuable model for investigating the function of hCD22 and preclinical studies targeting hCD22.<br /> (Copyright © 2017 by The American Association of Immunologists, Inc.)

Details

Language :
English
ISSN :
1550-6606
Volume :
199
Issue :
9
Database :
MEDLINE
Journal :
Journal of immunology (Baltimore, Md. : 1950)
Publication Type :
Academic Journal
Accession number :
28972089
Full Text :
https://doi.org/10.4049/jimmunol.1700898