Back to Search Start Over

Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury.

Authors :
Hotz MJ
Qing D
Shashaty MGS
Zhang P
Faust H
Sondheimer N
Rivella S
Worthen GS
Mangalmurti NS
Source :
American journal of respiratory and critical care medicine [Am J Respir Crit Care Med] 2018 Feb 15; Vol. 197 (4), pp. 470-480.
Publication Year :
2018

Abstract

Rationale: Potentially hazardous CpG-containing cell-free mitochondrial DNA (cf-mtDNA) is routinely released into the circulation and is associated with morbidity and mortality in critically ill patients. How the body avoids inappropriate innate immune activation by cf-mtDNA remains unknown. Because red blood cells (RBCs) modulate innate immune responses by scavenging chemokines, we hypothesized that RBCs may attenuate CpG-induced lung inflammation through direct scavenging of CpG-containing DNA.<br />Objectives: To determine the mechanisms of CpG-DNA binding to RBCs and the effects of RBC-mediated DNA scavenging on lung inflammation.<br />Methods: mtDNA on murine RBCs was measured under basal conditions and after systemic inflammation. mtDNA content on human RBCs from healthy control subjects and trauma patients was measured. Toll-like receptor 9 (TLR9) expression on RBCs and TLR9-dependent binding of CpG-DNA to RBCs were determined. A murine model of RBC transfusion after CpG-DNA-induced lung injury was used to investigate the role of RBC-mediated DNA scavenging in mitigating lung injury in vivo.<br />Measurements and Main Results: Under basal conditions, RBCs bind CpG-DNA. The plasma-to-RBC mtDNA ratio is low in naive mice and in healthy volunteers but increases after systemic inflammation, demonstrating that the majority of cf-mtDNA is RBC-bound under homeostatic conditions and that the unbound fraction increases during inflammation. RBCs express TLR9 and bind CpG-DNA through TLR9. Loss of TLR9-dependent RBC-mediated CpG-DNA scavenging increased lung injury in vivo.<br />Conclusions: RBCs homeostatically bind mtDNA, and RBC-mediated DNA scavenging is essential in mitigating lung injury after CpG-DNA. Our data suggest a role for RBCs in regulating lung inflammation during disease states where cf-mtDNA is elevated, such as sepsis and trauma.

Details

Language :
English
ISSN :
1535-4970
Volume :
197
Issue :
4
Database :
MEDLINE
Journal :
American journal of respiratory and critical care medicine
Publication Type :
Academic Journal
Accession number :
29053005
Full Text :
https://doi.org/10.1164/rccm.201706-1161OC