Back to Search Start Over

Decoding brain cognitive activity across subjects using multimodal M/EEG neuroimaging.

Authors :
Fatima S
Kamboh AM
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2017 Jul; Vol. 2017, pp. 3224-3227.
Publication Year :
2017

Abstract

Brain decoding is essential in understanding where and how information is encoded inside the brain. Existing literature has shown that a good classification accuracy is achievable in decoding for single subjects, but multi-subject classification has proven difficult due to the inter-subject variability. In this paper, multi-modal neuroimaging was used to improve two-class multi-subject classification accuracy in a cognitive task of differentiating between a face and a scrambled face. In this transfer learning problem, a feature space based on special-form covariance matrices manipulated with riemannian geometry are used. A supervised two-layer hierarchical model was trained iteratively for estimating classification accuracies. Results are reported on a publically available multi-subject, multi-modal human neuroimaging dataset from MRC Cognition and Brain Sciences Unit, University of Cambridge. The dataset contains simultaneous recordings of electroencephalography (EEG) and magnetoencephalography (MEG). Our model attained, using leave-one-subject-out cross-validation, a classification accuracy of 70.82% for single modal EEG, 81.55% for single modal MEG and 84.98% for multi-modal M/EEG.

Details

Language :
English
ISSN :
2694-0604
Volume :
2017
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
29060584
Full Text :
https://doi.org/10.1109/EMBC.2017.8037543