Back to Search
Start Over
17q23.2q23.3 de novo duplication in association with speech and language disorder, learning difficulties, incoordination, motor skill impairment, and behavioral disturbances: a case report.
- Source :
-
BMC medical genetics [BMC Med Genet] 2017 Oct 25; Vol. 18 (1), pp. 119. Date of Electronic Publication: 2017 Oct 25. - Publication Year :
- 2017
-
Abstract
- Background: Chromosomal rearrangements involving 17q23 have been described rarely. Deletions at 17q23.1q23.2 have been reported in individuals with developmental delay and growth retardation, whereas duplications at 17q23.1q23.2 appear to segregate with clubfoot. Dosage alterations in the TBX2 and TBX4 genes, located in 17q23.2, have been proposed to be responsible for the phenotypes observed in individuals with 17q23.1q23.2 deletions and duplications. In this report, we present the clinical phenotype of a child with a previously unreported de novo duplication at 17q23.2q23.3 located distal to the TBX2 and TBX4 region.<br />Case Presentation: We report a 7.5-year-old boy with speech and language disorder, learning difficulties, incoordination, fine motor skill impairment, infrequent seizures with abnormal EEG, and behavior disturbances (mild self-inflicted injuries, hyperactivity-inattention, and stereotyped hand movements). Chromosomal microarray revealed a 2-Mb duplication of chromosome 17q23.2q23.3. Both parents did not have the duplication indicating that this duplication is de novo in the child.<br />Conclusions: The duplicated region encompasses 16 genes. It is possible that increased dosage of one or more genes in this region is responsible for the observed phenotype. The TANC2 gene is one of the genes in the duplicated region.It encodes a member of the TANC (tetratricopeptide repeat, ankyrin repeat and coiled-coil containing) family which includes TANC1 and TANC2. These proteins are highly expressed in brain and play major roles in synapsis regulation. Hence, it is suggestive that TANC2 is the likely candidate gene responsible for the observed phenotype as an increased TANC2 dosage can potentially alter synapsis, resulting in neuronal dysfunction and the neurobehavioral phenotype observed in this child with 17q23.2q23.3 duplication.
- Subjects :
- Ataxia diagnosis
Ataxia physiopathology
Child
Developmental Disabilities diagnosis
Developmental Disabilities physiopathology
Electroencephalography
Gene Dosage
Gene Expression
Humans
Learning Disabilities diagnosis
Learning Disabilities physiopathology
Male
Phenotype
Proteins genetics
Psychomotor Disorders diagnosis
Psychomotor Disorders physiopathology
Seizures diagnosis
Seizures genetics
Seizures physiopathology
Self-Injurious Behavior diagnosis
Self-Injurious Behavior genetics
Self-Injurious Behavior physiopathology
Speech Disorders diagnosis
Speech Disorders physiopathology
Ataxia genetics
Chromosome Duplication
Chromosomes, Human, Pair 17 chemistry
Developmental Disabilities genetics
Learning Disabilities genetics
Psychomotor Disorders genetics
Speech Disorders genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1471-2350
- Volume :
- 18
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC medical genetics
- Publication Type :
- Academic Journal
- Accession number :
- 29070031
- Full Text :
- https://doi.org/10.1186/s12881-017-0479-3