Cite
Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy.
MLA
Kawamura, Masashi, et al. “Tissue-Engineered Smooth Muscle Cell and Endothelial Progenitor Cell Bi-Level Cell Sheets Prevent Progression of Cardiac Dysfunction, Microvascular Dysfunction, and Interstitial Fibrosis in a Rodent Model of Type 1 Diabetes-Induced Cardiomyopathy.” Cardiovascular Diabetology, vol. 16, no. 1, Nov. 2017, p. 142. EBSCOhost, https://doi.org/10.1186/s12933-017-0625-4.
APA
Kawamura, M., Paulsen, M. J., Goldstone, A. B., Shudo, Y., Wang, H., Steele, A. N., Stapleton, L. M., Edwards, B. B., Eskandari, A., Truong, V. N., Jaatinen, K. J., Ingason, A. B., Miyagawa, S., Sawa, Y., & Woo, Y. J. (2017). Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovascular Diabetology, 16(1), 142. https://doi.org/10.1186/s12933-017-0625-4
Chicago
Kawamura, Masashi, Michael J Paulsen, Andrew B Goldstone, Yasuhiro Shudo, Hanjay Wang, Amanda N Steele, Lyndsay M Stapleton, et al. 2017. “Tissue-Engineered Smooth Muscle Cell and Endothelial Progenitor Cell Bi-Level Cell Sheets Prevent Progression of Cardiac Dysfunction, Microvascular Dysfunction, and Interstitial Fibrosis in a Rodent Model of Type 1 Diabetes-Induced Cardiomyopathy.” Cardiovascular Diabetology 16 (1): 142. doi:10.1186/s12933-017-0625-4.