Back to Search
Start Over
Genotype-Specific Measles Transmissibility: A Branching Process Analysis.
- Source :
-
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America [Clin Infect Dis] 2018 Apr 03; Vol. 66 (8), pp. 1270-1275. - Publication Year :
- 2018
-
Abstract
- Background: Substantial heterogeneity in measles outbreak sizes may be due to genotype-specific transmissibility. Using a branching process analysis, we characterize differences in measles transmission by estimating the association between genotype and the reproduction number R among postelimination California measles cases during 2000-2015 (400 cases, 165 outbreaks).<br />Methods: Assuming a negative binomial secondary case distribution, we fit a branching process model to the distribution of outbreak sizes using maximum likelihood and estimated the reproduction number R for a multigenotype model.<br />Results: Genotype B3 is found to be significantly more transmissible than other genotypes (P = .01) with an R of 0.64 (95% confidence interval [CI], .48-.71), while the R for all other genotypes combined is 0.43 (95% CI, .28-.54). This result is robust to excluding the 2014-2015 outbreak linked to Disneyland theme parks (referred to as "outbreak A" for conciseness and clarity) (P = .04) and modeling genotype as a random effect (P = .004 including outbreak A and P = .02 excluding outbreak A). This result was not accounted for by season of introduction, age of index case, or vaccination of the index case. The R for outbreaks with a school-aged index case is 0.69 (95% CI, .52-.78), while the R for outbreaks with a non-school-aged index case is 0.28 (95% CI, .19-.35), but this cannot account for differences between genotypes.<br />Conclusions: Variability in measles transmissibility may have important implications for measles control; the vaccination threshold required for elimination may not be the same for all genotypes or age groups.
- Subjects :
- Adolescent
Binomial Distribution
California epidemiology
Child
Disease Eradication
Genotype
Humans
Likelihood Functions
Measles epidemiology
Measles prevention & control
Measles virology
Measles virus physiology
Species Specificity
Disease Outbreaks
Measles transmission
Measles Vaccine immunology
Measles virus genetics
Models, Theoretical
Vaccination
Subjects
Details
- Language :
- English
- ISSN :
- 1537-6591
- Volume :
- 66
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Clinical infectious diseases : an official publication of the Infectious Diseases Society of America
- Publication Type :
- Academic Journal
- Accession number :
- 29228134
- Full Text :
- https://doi.org/10.1093/cid/cix974