Back to Search
Start Over
Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice.
- Source :
-
Frontiers in plant science [Front Plant Sci] 2017 Dec 05; Vol. 8, pp. 2071. Date of Electronic Publication: 2017 Dec 05 (Print Publication: 2017). - Publication Year :
- 2017
-
Abstract
- D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome- c -dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.
Details
- Language :
- English
- ISSN :
- 1664-462X
- Volume :
- 8
- Database :
- MEDLINE
- Journal :
- Frontiers in plant science
- Publication Type :
- Academic Journal
- Accession number :
- 29259615
- Full Text :
- https://doi.org/10.3389/fpls.2017.02071